В монографии рассмотрены задачи о линейной и слабо нелинейной устойчивости различных трехмерных магнитогидродинамических систем к длинномасштабным возмущениям: задачи кинематического динамо для пространственно-периодических центрально-симметричных стационарных и периодических по времени течений в трехмерном пространстве и для конвективных план-форм в плоском слое, задачи о линейной и слабо нелинейной устойчивости МГД систем в пространстве, а также задача о слабо нелинейной устойчивости конвективного динамо в горизонтальном плоском слое, вращающемся относительно вертикальной оси. Для каждой задачи выведен тензор alpha-эффекта. Показано, что при его несущественности в главном порядке длинномасштабные возмущения подвержены действию анизотропной вихревой диффузии, а слабо нелинейные возмущения — также и анизотропной вихревой адвекции. При определенных условиях имеют место и другие физические эффекты — в амплитудных уравнениях для усредненных возмущений возникает нелокальный оператор, описывающий нестандартную анизотропную вихревую диффузию, а при изучении устойчивости ветвей решений вблизи точек бифуркаций типа вилки или Хопфа — кубическая нелинейность и оператор alpha-эффекта (при отсутствии alpha-эффекта в главном порядке). Рассмотрены вопросы вычисления коэффициентов вихревых операторов. Численно показано, что отрицательная вихревая диффузия способна вызвать неустойчивость к длинномасштабным возмущениям короткомасштабных МГД систем (устойчивых к короткомасштабным возмущениям). Монография предназначена для специалистов в области магнитогидродинамики и гидродинамики, прикладной математики, геофизики, а также аспирантов, обучающихся по соответствующим специальностям.