В книге излагается асимптотическое решение известной проблемы Дедекинда о числе монотонных булевых функций, а также метод граничных функционалов, предназначенный для решения задач подобного типа. Проблема имеет более чем вековую историю, начавшуюся с работы Р. Дедекинда 1897 г., в которой было найдено число элементов дистрибутивной свободной структуры с четырьмя образующими, или, что то же самое, число монотонных булевых функций, зависящих от четырех переменных. С начала 1950-х годов проблема привлекла большой интерес специалистов в области алгебры логики и кибернетики и способствовала развитию методов решения перечислительных задач. Книга адресована студентам, аспирантом и научным работникам в области дискретной математики.