» Предлагаемая монография посвящена систематизации результатов исследований Пермского семинара о новом подходе к задачам классического вариационного исчисления. Приведены необходимые сведения по общей теории функционально-дифференциальных уравнений, сформулированы и доказаны необходимые и достаточные условия существования единственного минимума квадратичного функционала весьма общего вида. Предложены и проиллюстрированы на большом количестве модельных примеров методы численного решения возникающих задач. Для специального вида неквадратичного функционала сформулированы эффективные признаки его выпуклости в заданной области определения. На основании общих утверждений предложены в качестве примеров оригинальные методы решения классических задач о прогибе балки и об устойчивости упругого стержня под действием продольной сжимающей силы. Для научных работников, преподавателей, аспирантов и студентов, интересы которых связаны с теорией и применением вариационного исчисления.»