В настоящей монографии впервые систематически исследуются обратные задачи Штурма-Лиувилля с нераспадающимися краевыми условиями. В работе сведены воедино, обобщены и дополнены результаты, полученные и опубликованные авторами в журнальных статьях. Книга состоит из трех глав. В первой главе доказываются самые ранние теоремы о единственности решений обратных задач Штурма-Лиувилля с нераспадающимися краевыми условиями, при доказательстве которых был использован метод отображений пространств решений. Во второй главе приводятся теоремы авторов о единственности, разрешимости и устойчивости решений для задачи Штурма-Лиувилля с нераспадающимися краевыми условиями, а также для пучка дифференциальных операторов. Приводятся также соответствующие примеры и контрпримеры. В отличие от первой части здесь основным методом решения обратных задач выступает метод вспомогательных задач, а не метод отображений пространств решении. В третьей главе приводятся результаты восстановления краевых условий задачи Штурма-Лиувилля с известным дифференциальным уравнением.